
Extract summary from kmm
object, including two-sample significance test for homogeneity of the numerator and denominator samples
Source: R/summary.R
summary.kmm.Rd
Extract summary from kmm
object, including two-sample significance
test for homogeneity of the numerator and denominator samples
Usage
# S3 method for class 'kmm'
summary(
object,
test = FALSE,
n_perm = 100,
parallel = FALSE,
cluster = NULL,
min_pred = 1e-06,
...
)
Arguments
- object
Object of class
kmm
- test
logical indicating whether to statistically test for homogeneity of the numerator and denominator samples.
- n_perm
Scalar indicating number of permutation samples
- parallel
logical
indicating to run the permutation test in parallel- cluster
NULL
or a cluster object created bymakeCluster
. IfNULL
andparallel = TRUE
, it uses the number of available cores minus 1.- min_pred
Scalar indicating the minimum value for the predicted density ratio values (used in the divergence statistic) to avoid negative density ratio values.
- ...
further arguments passed to or from other methods.
Examples
set.seed(123)
# Fit model
dr <- kmm(numerator_small, denominator_small)
# Inspect model object
dr
#>
#> Call:
#> kmm(df_numerator = numerator_small, df_denominator = denominator_small)
#>
#> Kernel Information:
#> Kernel type: Gaussian with L2 norm distances
#> Number of kernels: 150
#> sigma: num [1:10] 0.801 1.2 1.483 1.723 1.954 ...
#>
#> Optimal sigma (5-fold cv): 3.67
#> Optimal kernel weights (5-fold cv): num [1:150, 1] 0.23 0.416 -0.166 1.512 0.831 ...
#>
#> Optimization parameters:
#> Optimization method: Unconstrained
#>
# Obtain summary of model object
summary(dr)
#>
#> Call:
#> kmm(df_numerator = numerator_small, df_denominator = denominator_small)
#>
#> Kernel Information:
#> Kernel type: Gaussian with L2 norm distances
#> Number of kernels: 150
#> Optimal sigma: 3.669758
#> Optimal kernel weights: num [1:150, 1] 0.23 0.416 -0.166 1.512 0.831 ...
#>
#> Pearson divergence between P(nu) and P(de): 0.9439
#> For a two-sample homogeneity test, use 'summary(x, test = TRUE)'.
#>
# Plot model object
plot(dr)
#> Warning: Negative estimated density ratios for 19 observation(s) converted to 0.01 before applying logarithmic transformation
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Plot density ratio for each variable individually
plot_univariate(dr)
#> Warning: Negative estimated density ratios for 19 observation(s) converted to 0.01 before applying logarithmic transformation
#> [[1]]
#>
#> [[2]]
#>
#> [[3]]
#>
# Plot density ratio for each pair of variables
plot_bivariate(dr)
#> Warning: Negative estimated density ratios for 19 observation(s) converted to 0.01 before applying logarithmic transformation
#> [[1]]
#>
#> [[2]]
#>
#> [[3]]
#>
# Predict density ratio and inspect first 6 predictions
head(predict(dr))
#> [,1]
#> [1,] 3.1261579
#> [2,] 4.0233887
#> [3,] 3.6868339
#> [4,] 5.5934888
#> [5,] 0.6302996
#> [6,] 1.5225886
# Fit model with custom parameters
kmm(numerator_small, denominator_small,
nsigma = 5, ncenters = 100, nfold = 10,
constrained = TRUE)
#>
#> Call:
#> kmm(df_numerator = numerator_small, df_denominator = denominator_small, constrained = TRUE, nsigma = 5, ncenters = 100, nfold = 10)
#>
#> Kernel Information:
#> Kernel type: Gaussian with L2 norm distances
#> Number of kernels: 100
#> sigma: num [1:5] 0.811 1.577 2.094 2.66 3.706
#>
#> Optimal sigma (10-fold cv): 2.094
#> Optimal kernel weights (10-fold cv): num [1:100, 1] -0.000498 -0.000999 -0.001187 -0.001022 -0.000275 ...
#>
#> Optimization parameters:
#> Optimization method: Constrained
#>