Skip to contents

Print a kmm object

Usage

# S3 method for class 'kmm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x

Object of class kmm.

digits

Number of digits to use when printing the output.

...

further arguments on how to format the number of digits.

Value

invisble The inputted kmm object.

See also

Examples

set.seed(123)
# Fit model
dr <- kmm(numerator_small, denominator_small)
# Inspect model object
dr
#> 
#> Call:
#> kmm(df_numerator = numerator_small, df_denominator = denominator_small)
#> 
#> Kernel Information:
#>   Kernel type: Gaussian with L2 norm distances
#>   Number of kernels: 150
#>   sigma: num [1:10] 0.801 1.2 1.483 1.723 1.954 ...
#> 
#> Optimal sigma (5-fold cv): 3.67
#> Optimal kernel weights (5-fold cv):  num [1:150, 1] 0.23 0.416 -0.166 1.512 0.831 ...
#> 
#> Optimization parameters:
#>   Optimization method:  Unconstrained 
#> 
# Obtain summary of model object
summary(dr)
#> 
#> Call:
#> kmm(df_numerator = numerator_small, df_denominator = denominator_small)
#> 
#> Kernel Information:
#>   Kernel type: Gaussian with L2 norm distances
#>   Number of kernels: 150
#> Optimal sigma: 3.669758
#> Optimal kernel weights: num [1:150, 1] 0.23 0.416 -0.166 1.512 0.831 ...
#>  
#> Pearson divergence between P(nu) and P(de): 0.9439
#> For a two-sample homogeneity test, use 'summary(x, test = TRUE)'.
#> 
# Plot model object
plot(dr)
#> Warning: Negative estimated density ratios for 19 observation(s) converted to 0.01 before applying logarithmic transformation
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

# Plot density ratio for each variable individually
plot_univariate(dr)
#> Warning: Negative estimated density ratios for 19 observation(s) converted to 0.01 before applying logarithmic transformation
#> [[1]]

#> 
#> [[2]]

#> 
#> [[3]]

#> 
# Plot density ratio for each pair of variables
plot_bivariate(dr)
#> Warning: Negative estimated density ratios for 19 observation(s) converted to 0.01 before applying logarithmic transformation
#> [[1]]

#> 
#> [[2]]

#> 
#> [[3]]

#> 
# Predict density ratio and inspect first 6 predictions
head(predict(dr))
#>           [,1]
#> [1,] 3.1261579
#> [2,] 4.0233887
#> [3,] 3.6868339
#> [4,] 5.5934888
#> [5,] 0.6302996
#> [6,] 1.5225886
# Fit model with custom parameters
kmm(numerator_small, denominator_small,
    nsigma = 5, ncenters = 100, nfold = 10,
    constrained = TRUE)
#> 
#> Call:
#> kmm(df_numerator = numerator_small, df_denominator = denominator_small,     constrained = TRUE, nsigma = 5, ncenters = 100, nfold = 10)
#> 
#> Kernel Information:
#>   Kernel type: Gaussian with L2 norm distances
#>   Number of kernels: 100
#>   sigma: num [1:5] 0.811 1.577 2.094 2.66 3.706
#> 
#> Optimal sigma (10-fold cv): 2.094
#> Optimal kernel weights (10-fold cv):  num [1:100, 1] -0.000498 -0.000999 -0.001187 -0.001022 -0.000275 ...
#> 
#> Optimization parameters:
#>   Optimization method:  Constrained 
#>